Positive toric fibrations

نویسنده

  • Misha Verbitsky
چکیده

A principal toric bundleM is a complex manifold equipped with a free holomorphic action of a compact complex torus T . Such a manifold is fibered over M/T , with fiber T . We discuss the notion of positivity in fiber bundles and define positive toric bundles. Given an irreducible complex subvariety X ⊂ M of a positive principal toric bundle, we show that either X is T -invariant, or it lies in an orbit of T -action. For principal elliptic bundles, this theorem is known ([V]). As follows from Borel-Remmert-Tits theorem, any simply connected compact homogeneous complex manifold is a principal toric bundle. We show that compact Lie groups with left-invariant complex structure I are positive toric bundles, if I is generic. Other examples of positive toric bundles are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integral Affine Structures on Spheres Duke-cgtp-03-01 and Torus Fibrations of Calabi-yau Toric Hypersurfaces Ii

This paper is a continuation of our paper [HZ02] where we have built a combinatorial model for the torus fibrations of Calabi-Yau toric hypersurfaces. This part addresses the connection between the model torus fibration and the complex and Kähler geometry of the hypersurfaces.

متن کامل

Local Torus Actions Modeled on the Standard Representation

We introduce the notion of a local torus action modeled on the standard representation (for simplicity, we call it a local torus action). It is a generalization of a locally standard torus action and also an underlying structure of a locally toric Lagrangian fibration. For a local torus action, we define two invariants called a characteristic pair and an Euler class of the orbit map, and prove ...

متن کامل

Derived Category of Toric Fibrations

In this paper, we give a structure theorem for the derived category D(X) of a toric fibration X over P with fiber Y provided that Y has a full strongly exceptional collection of line bundles.

متن کامل

Torus Fibrations of Calabi-yau Hypersurfaces in Toric Varieties

1. Introduction. Strominger, Yau, and Zaslow [SYZ] conjectured that any Calabi-Yau manifold X having a mirror partner X ∨ should admit a special Lagrangian fi-bration π : X → B. (A mathematical account of their construction can be found in [M].) If so, the mirror manifold X ∨ is obtained by finding some suitable compactifi-cation of the moduli space of flat U(1)-bundles along the nonsingular fi...

متن کامل

Integral Affine Structures on Spheres Duke-cgtp-02-05 and Torus Fibrations of Calabi-yau Toric Hypersurfaces I

We describe in purely combinatorial terms dual pairs of integral affine structures on spheres which come from the conjectural metric collapse of mirror families of Calabi-Yau toric hypersurfaces. The same structures arise on the base of a special Lagrangian torus fibration in the Strominger-Yau-Zaslow conjecture. We study the topological torus fibration in the large complex structure limit and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007